.
Application Note 386

1 DALLAS JiWl 1€ 1 /W1 Ds3131 Step by Step Configuration—
Configuration Mode

WWW.maxim-ic.com

OVERVIEW

This application note describes an example of how to configure a single port on the DS3131 operating in
configuration mode. Additionally, this example describes how to construct, send, receive, and check a
packet in loopback mode on that port. This application note is presented as a coding example for easy
adaptation to end- user applications.

The local bus can operate in two modes in DS3131: PCI bridge mode and configuration bus mode.
In the configuration mode, the local bus is used only to control and monitor the DS3131 while the HDLC

packet data is transferred by the PCI bus. Data cannot be passed from the local bus to the PCI bus in this
mode. (Refer to the DS3131 data sheet, Section 10.)

This example has the following configuration:

= Only port 1 and channel 1 of the DS3131 are assigned. All other ports are not used.

= HDLC channel 1 of the DS3131 is assigned four Rx FIFO blocks, four Tx FIFO blocks, an Rx FIFO
high watermark of 3, and a Tx low watermark of 1.

= A 16-byte packet is constructed in host memory using one Tx buffer, one Tx descriptor, and one Tx
pending queue entry. Since the DS3131 is in loopback mode, when the packet is transmitted it is aso
be received by the DS3131. The received packet is written to host memory using one Rx buffer, one
Rx descriptor, and one Rx done queue entry.

= The host memory is configured as follows:

Receive Side:

Rx free queue base address (RFQBA 1/0) = 0x10000000
Rx done queue base address (RDQBA1/0) = 0x10000100
Rx descriptor base address (RDBA1/0) = 0x10000200
Rx buffer base address = 0x10001000
Transmit Side:
Tx pending queue base address (TPQBA1/0) = 0x10000300
Tx done queue base address (TDQBA1/0) = 0x10000400
Tx descriptor base address (TDBA1/0) = 0x10000500
Tx buffer base address = 0x10002000

lof 16 052902

http://pdfserv.maxim-ic.com/arpdf/DS3131.pdf

AN386

Definition of the Coding Example Function Calls
In order to improve readability, the code in this example uses several function calls. The definitions of
these functions are as follows:

write reg(address, data)
Write the specified data to the specified DS3131 register address.

I nputs:

Address = the register address where data is to be written
Data = the data to be written to the specified register
Outputs: None

read_reg(address, data)
Read the contents of the DS3131 register at the specified address.

I nputs:

Address = the register address that is to be read
Outputs:

Data = the value read from the register

write reg_| S(address, data)
Write the specified data to the specified DS3131 indirect select register and then wait for that register’s
busy bit to clear before returning.

Inputs:

Address = the indirect select register where data is to be written
Data = the data to be written to the specified register
Outputs: None

Function Code: write_reg(address, data);

bit_check = 0x8000;
while (bit_check & 0x8000)
read reg(address, bit_check);

wr_dword(address, data)
Write the specified 32-bit data value to the specified 32-bit host memory address.

I nputs:

Address = the host memory address where datais to be written
Data = the data to be written to the specified memory address
Outputs: None

rd_dword(address, data)
Read a 32-bit data value from the specified 32-bit host memory address.

Inputs:

Address = the host memory address which isto be read
Outputs:

Data = the 32-bit data value read from host memory

frame_wait(count)
Provides a delay equal to count number of frame periods where a frame period is 125us.

Inputs:
Count = number of frame periods to wait
Outputs: None

20f 16

AN386

Configuration Mode Coding Example
The code in this application note consists of the following steps:

1) Reset the DS3131

2) Configure the DS3131

3) Enable the HDLC channel

4) Put the HDLC channel in loopback mode

5) Queue, send, receive, and check a data packet

Each of these steps is detailed in the following sections by a brief description and coding example.
Register names are used instead of addresses to improve readability. The corresponding address/offset of
the DS3131 internal device configuration registers are listed in accompanying tables. Additionaly, the
abbreviations Tx and Rx are used to represent transmit side and receive side, respectively. Refer to the
DS3131 data sheet for more detailed information.

1. Reset the DS3131

A software reset can be performed on all registers in the DS3131 using the master reset register (MRID).
All internal registers are set to a default value of 0 when bit O of the MRID register is set to 1.The host
must set this bit back to O before the device can be programmed for normal operation. Make sure the
DMA is off on transmit and receive side through the channel enable bit in transmit and receive RAM.

DATA SHEET
OFFSET/ADDRESS ACRONYM REGISTER NAME SECTION
0000 MRID Master Reset and ID Register 4.1
/'l Reset the DS3131 using MRID registers nmaster reset bit.
write_reg(MRI D, 0x0001);
write_reg(MRI D, 0x0000);
DATA SHEET
OFFSET/ADDRESS| ACRONYM REGISTER NAME SECTION
0770 RDMACIS |Receive DMA Configuration Indirect Select 8.1.5
0774 RDMAC Receive DMA Configuration 8.1.5
/1 Disable the RX DVA configurati on RAM
write_reg(RDVAC, 0x0000);
for (channel =0; channel <40; channel =channel +1)
write_reg | S(RDMACI S, 0x0400 + channel);
DATA SHEET
OFFSET/ADDRESS | ACRONYM REGISTER NAME SECTION
0870 TDMACIS [Transmit DMA Configuration Indirect Select 8.2.5
0874 TDMAC [Transmit DMA Configuration 8.2.5

/1 Disable the TX DVMA configurati on RAM

write_reg(TDMAC, 0x0000);

for(channel =0; channel <40; channel =channel +1)
wite reg_ | S(TDVACI S, 0x0400 + channel);

3of 16

http://pdfserv.maxim-ic.com/arpdf/DS3131.pdf

AN386

2. Configure the DS3131
Configuration of the DS3131 consists of the following steps.

1) Configure PCI registers

2) Configure the DMA registers

3) Configurethe FIFO registers

4) Configure the Port registers (Layer 1)
5) Configure the HDLC registers (Layer 2)

Configuration of each of these register sets is detailed in the following sections. Several variables are
used to improve readability and provide a more agorithmic code structure. The following code provides
the initialization of these variables:

/1 This exanple uses port 1 channel 1
port = 1;
channel = 1;

/1 RX free queue base address
rfq_base_addr = 0x10000000;

/1 RX free queue end address
/1 RX free queue size = 16
rfq_end_i dx = 0x0010;

/'l RX done queue base address
rdg_base_addr = 0x10000100;

/1 RX done queue end address
/1 RX done queue size = 16
rdg_end_i dx = 0x0010;

/1 RX descriptor base address
/1 RX descriptor table size = 256
rdscr_base_addr = 0x10000200;

// RX data buffer base address
rx_buf base_addr = 0x10001000;

/1 TX pendi ng queue base address
t pq_base_addr = 0x10000300;

/1 TX pendi ng queue end address
/'l TX pendi ng queue size = 16
tpg_end_idx = 0x0010;

/1 TX done queue base address
tdq_base_addr = 0x10000400;

// TX done queue end address
/1 TX done queue size = 16
tdg_end_i dx = 0x0010;

/1 TX descriptor base address
/1 TX descriptor table size = 256
tdscr _base_addr = 0x10000500;

/1 TX data buffer base address
t x_buf _base_addr = 0x10002000;

40f 16

AN386

Configure the PCI Registers

In configuration mode, the PCl registers control how the DS3131 interfaces to the PCl bus when
performing DMA operations. PCI register configuration is system dependent and therefore the coding
example below may need to be modified to support a particular user application.

DATA SHEET
OFFSET/ADDRESS| ACRONYM REGISTER NAME SECTION
0x004/0A04 PCMDO |PCI Command Status 0 9.2

/1 PCI comrand/status register O - controls DS3131 DMA functionality

/1l Set Bit 2 =1 to allow device operation as bus master on PCl bus (required for
DMR)

/] Set bit 6 1 to act on parity errors

/'l Set bit 8 1 to enabl e PSERR pin

write_reg(PCVDO, 0x0144);

Configure the DMA Registers

The DMA block handles the transfer of packet data from the FIFO block to the PCI block and vice versa.
The PCI block controls data transfers between the DS3131 and the external PCI bus. The host, defined as
the CPU or intelligent controller that sits on the PCI bus, instructs the DS3131 abou how to handle the
incoming and outgoing data. This is accomplished using descriptors that are defined as preformatted
messages passed from the host to the DMA block or vice versa. Using these descriptors, the host informs
the DMA about the location and datus of packet data to be transmitted, and where to place packet data
that is received. The DMA uses these descriptors to tell the host the status of packet data that has been
transmitted, and the status and location of packet data that has been received.

On the receive side the host writes to the free queue descriptors informing the DMA where it can place
incoming packet data. Associated with each free queue entry is a receive data buffer location and packet
descriptor. Asthe DS3131 uses receive free gueue entries to write received packet data to host memory, it
creates entries in the Rx done queue. These Rx done queue entries inform the host about the location and
status of received data. Refer to the DS3131 data sheet for more detailed information. The host must
configure the Rx DMA by writing to all the of the registers at the following table:

50f 16

AN386

DATA SHEET
OFFSET/ADDRESS |[ACRONYM REGISTER NAME SECTION
0700 RFQBAO |Receive Free Queue Base Address O (lower word) 8.13
0704 RFQBA1 |Receive Free Queue Base Address 1 (upper word) 8.1.3
0708 RFQEA Receive Free Queue end Address 8.1.3
070C RFQSBSA | Receive Free Small Buffer Start Address 8.13
0710 RFQLBWP | Receive Free Queue Large Buffer Host Write Pointer 8.1.3
0714 RFQSBWP | Receive Free Queue Small Buffer Host Write Pointer 8.1.3
0718 RFQLBRP | Receive Free Queue Large Buffer DMA Read Pointer 8.1.3
071C RFQSBRP | Receive Free Queue Small Buffer DMA Read Pointer 8.1.3
0730 RDQOQBAO [Receive Done Queue Base Address O (lower word) 814
0734 RDQBA1 |[Receive Done Queue Base Address 1 (upper word) 8.1.4
0738 RDQEA Receive Done Queue end Address 8.14
073C RDQRP | Receive Done Queue Host Read Pointer 8.14
0740 RDQWP | Receive Done Queue DMA Write Pointer 8.14
0750 RDBAQ |Receive Descriptor Base Address O (lower word) 8.1.2
0754 RDBA1 |Receive Descriptor Base Address 1 (upper word) 8.1.2
0770 RDMACIS |Receive DMA Configuration Indirect Select 8.1.5
0774 RDMAC | Receive DMA Configuration 8.1.5
0790 RLBS Receive Large Buffer Size 8.1.1

/1 RX large buffer size = 256 bytes
write_reg(RLBS, 0x0100);

/1 RX free queue
write_reg(RFQBAO,
write_reg(RFQBAL,

/1 RX free queue

base address

rfg_base_addr

& OxO0000FFFF) ;

(rfq_base_addr >> 16) & Ox0000FFFF);

| arge buffer

write_ reg(RFQLBRP, 0x0000);
write_reg(RFQLBWP, 0x0000);
smal | buffer start address = 16

/1 RX free queue

write_reg(RFQSBSA,

/1 RX free queue

smal | buffer

write_reg(RFQSBRP, 0x0000);
write_reg(RFQSBWP, 0x0000);

/'l RX free gueue
write_reg(RFQEA,

/1 RX done queue
write_reg(RDQBAO,
write_reg(RDQBAL,

end address
rfg_end_idx);

base address

rdg_base_addr

read and wite pointers

rfqg_end_i dx);

read and wite pointers

1
o

1
o

& OX0000FFFF) ;

(rdg_base_addr >> 16) & Ox0000FFFF);

/1 RX done queue read and wite pointers = 0

write reg(RDQRP,
write_reg(RDQAP,

/1 RX done queue
write_reg(RDQEA,

0x0000) ;
0x0000) ;

end address
rdg_end_i dx);

60f 16

AN386

/1 RX descriptor base address
write_reg(RDBAO, rdscr_base_addr & OxO0000FFFF);
write_reg(RDBALl, (rdscr_base_addr >> 16) & Ox0000FFFF);

/1 RX DVMA Channel Configuration
/1 The data in RDMAC register is witten to or read fromthe Receive Configuration
/1 RAM

/1 Set bit 0 =0 to disable the HDLC Channel
/1 Set bit 2-1 = 00 for large buffers only
/1 Set bit 6-3 = 0000 for O byte offset fromthe data buffer address of the first

data buffer

/1l Set Bit 9-7
/1l conplete

/'l Set the HDLC Channel Number by RDMACI S register
write_reg(RDVAC, 0x0000);

write_reg | S(RDMACI S, 0x0400 + channel);

000 for DMA wite to the Done Queue only after packet reception is

On the transmit side, the host writes to the pending queue informing the DMA which channels have
packet data that is ready to be transmitted. Associated with each pending queue descriptor is a linked list
of one or more transmit packet descriptors that describe the packet data. Each of these transmit packet
descriptors aso has a pointer to a transmit data buffer that contains the actual data payload of the HDLC
packet. As the DS3131 processes transmit pending queue descriptor entries, it creates transmit done
gueue descriptor queue entries. The DMA writes to the done queue when it has completed transmitting
either a complete packet or data buffer depending on how the DS3131 is configured. Using these done
gueue descriptors, the DMA informs the host about the status of the outgoing packet data. Refer to the
DS3131 data sheet for more detailed information. The host must configure the Tx DMA by writing to all
the of the registers at the following table:

DATA SHEET
OFFSET/ADDRESS | ACRONYM REGISTER NAME SECTION
0800 TPQBAO | Transmit Pending Queue Base Address O (lower word) 8.2.3
0804 TPQBA1 | Transmit Pending Queue Base Address 1 (upper word) 8.2.3
0808 TPQEA Transmit Pending Queue end Address 8.2.3
080C TPQWP | Transmit Pending Queue Host Write Pointer 8.2.3
0810 TPQRP Transmit Pending Queue DMA Read Pointer 8.2.3
0830 TDQBAO |Transmit Done Queue Base Address O (lower word) 8.2.4
0834 TDQBA1 |Transmit Done Queue Base Address 1 (upper word) 8.2.4
0838 TDQEA Transmit Done Queue end Address 8.2.4
083C TDQRP | Transmit Done Queue Host Read Pointer 8.2.4
0840 TDQWP | Transmit Done Queue DMA Write Pointer 8.2.4
0850 TDBAO | Transmit Descriptor Base Address O (lower word) 8.2.2
0854 TDBA1 |Transmit Descriptor Base Address 1 (upper word) 8.2.2
0870 TDMACIS |[Transmit DMA Configuration Indirect Select 8.2.5
0874 TDMAC [Transmit DMA Configuration 8.2.5

7of 16

AN386

/1 TX pendi ng queue base address
write_reg(TPQBAO, tpg_base_addr & Ox0000FFFF);
write_reg(TPQBAL, (tpg_base_addr >> 16) & O0x0000FFFF);

/1 TX pendi ng queue read and wite pointers = 0
write_reg(TPQRP, 0x0000);
wite_reg(TPQAP, 0x0000);

/'l TX pendi ng queue end address
write_reg(TPQEA, tpqg_end_ idx);

/1 TX done queue base address
write_reg(TDQBAO, tdq_base_addr & OxOOOOFFFF);
write_reg(TDQBAL, (tdg_base_addr >> 16) & OxO00O0FFFF);

/1 TX done queue read and wite pointers = 0
write_ reg(TDQRP, 0x0000);
write_ reg(TDQWP, 0x0000);

/1 TX done queue end address

write_reg(TDQEA, tdqg_end_idx);

/1 TX descriptor base address

write_reg(TDBAO, tdscr_base_addr & OxO0000FFFF);
write_reg(TDBAl, (tdscr_base_addr >> 16) & Ox0000FFFF);

/1 TX DVMA Channel Configuration

/1 The data in TDMAC register is witten to or read fromthe Receive Configuration
RAM

/1 Set bit O 0 to disable HDLC Channel

/1 Set bit 1 0 for wite done queue after packet transmtted

/1 Set the HDLC Channel Number by TDMACI S regi ster

write_reg(TDMAC, 0x0000);

wite reg | S(TDMACI S, 0x0200 + channel);

Configure the FIFO Registers

The DS3131 contains an 8kB transmit FIFO and an 8kB receive FIFO. Each FIFO is divided into 512
blocks of 4 dwords, or 16 bytes. FIFO memory is allocated on an HDLC channel basis. The amount of
FIFO memory allocated to each HDLC channel is programmable and can be a minimum of 4 blocks and a
maximum of 512 blocks. FIFO memory is alocated to HDLC channels by creating a circular linked list
out of agroup of blocks where each block points to the next block in the chain and the last block pointsto
the first. The FIFO block linked list is assigned to a specific HDLC channel by assigning one block in the
linked list to be that channel’ s FIFO starting block pointer.

The calculation of number of block, high watermark, and low watermark:

Blocks = 512 / number of port uses
High Watermark = Block / 2
Low Watermark = Block / 2

In this example, four Tx FIFO blocks and four Rx FIFO blocks are assigned to the HDLC channel. This
example also uses an Rx FIFO high watermark of 3 and Tx FIFO low watermark of 1. The Rx FIFO high
watermark indicates how many blocks should be written into Rx FIFO by the HDLC engines before the
DMA begins sending the data to the PCI bus. The high watermark setting must be between one block and
one less than the number of blocks in the link-list chain for the particular channel involved. The Tx FIFO
low watermark indicates how many blocks should be left in the Tx FIFO before the DMA should begin

8of 16

AN386
getting more data from the PCI bus. The amount of FIFO memory, Rx FIFO high watermark, and Tx
FIFO low watermark required by an HDL C channel to prevent transmit underflows and receive overflows
from occurring is application dependent. The Tx FIFO and Rx FIFO of the DS3131 are configured
independently on an HDL C channel basis through the registers listed in the following tables.

DATA SHEET
OFFSET/ADDRESS | ACRONYM REGISTER NAME SECTION
0910 RFBPIS Receive FIFO Block Pointer Indirect Select 7.2
0914 RFBP Receive FIFO Block Pointer 7.2

/1 Build the RX FIFO bl ock Iinked |i st

/1 0->1->2->3->0

for (block=0; block<4; block=bl ock+1)

{

/1 Bits 9-0 in RFBP register indicate which block is next in the
/1 linked list

write_reg(RFBP, block+1);

wite_reg_ | S(RFBPI'S, bl ock);

}

/1 The last block points to the first block to create a circular |inked Iist
write_reg(RFBP, 0x0000);
write_reg | S(RFBPI'S, 0x0003);

/1 Assign the circular linked list to a specific channel
write_reg(RFSBP, 0x0000);
wite_reg_I S(RFSBPI'S, channel);

DATA SHEET
OFFSET/ADDRESS| ACRONYM REGISTER NAME SECTION
0920 RFHWMIS | Receive FIFO High Watermark Indirect Select 7.2
0924 RFHWM Receive FIFO High Watermark 7.2
/1 Set RX FIFO high watermark for channel to 3
write_reg(RFHWM 0x0003);
write reg | S(RFHWM S, channel);
DATA SHEET
OFFSET/ADDRESS| ACRONYM REGISTER NAME SECTION
0990 TFBPIS Transmit FIFO Block Pointer Indirect Select 7.2
0994 TFBP Transmit FIFO Block Pointer 7.2

/1 TX FI FO bl ock |inked Iist

/1 0->1->2->3->0

for (bl ock=0; block<3; block=bl ock+1)

{

/1l Bits 9-0 in RFBP register indicate which block is next in the |linked |ist
write_reg(TFBP, bl ock+1);

write_ reg | S(TFBPI'S, bl ock);

}

/1 The last block points to the first block to create a circular |inked list
write_reg(TFBP, 0x0000);
wite reg_ | S(TFBPI'S, 0x0003);

90of 16

AN386

DATA SHEET
OFFSET/ADDRESS | ACRONYM REGISTER NAME SECTION
0980 TFSBPIS | Transmit FIFO Starting Block Pointer Indirect Select 7.2
0984 TFSBP Transmit FIFO Starting Block Pointer 7.2

/1 Assign the circular linked list to a specific channel
write_reg(TFSBP, 0x0000);
write_reg | S(TFSBPI'S, channel);

/1 Set TX FIFO | ow watermark for channel to 1
write_reg(TFLWM 0x0001);
write reg | S(TFLWM S, channel);

Configure Port Registers (Layer 1)
Each port of the DS3131 contains a Layer 1 controller that performs several functions including:

- Assigning the HDL C channel number to the incoming and outgoing data
- Routing data to and from the BERT function

Layer 1 configuration is performed on a port basis by the RP[n]CR, TP[n]CR, registers where n is the

port to be configured.

DATA SHEET
OFFSET/ADDRESS | ACRONYM REGISTER NAME SECTION
01xx RP[N]CR |Receive Port n Control Register 5.2
02xx TP[N]CR |Transmit Port n Control Register 5.2

/1 Set RX Port Control Register

/1 Set bits 1-0 = 00 for clock and data are not inverted
/1 Set bit 10 = 0 to disable |ocal |oopback A

write reg(RPOCR + 4*port, 0x0000);

/1 Set TX Port Control Register

/1 Set bit 1-0 = 00 for clock and data are not inverted
/1 Set bit 3 =0 to force all data at TD to be 1 (TFDAl)
write_reg(TPOCR + 4*port, 0x0000);

Configure HDLC Registers (Layer 2)

The DS3131 contains a 40 HDLC controller, which performs the Layer 2 functions. Functions performed

by this controller include:

- Zero stuffing and de-stuffing

- Flag detection and byte alignment
- CRC generation and checking

- Datainversion and bit flipping

The HDLC controller is configured on a channel basis by the RH[n]CD and TH[n]CD registers.

DATA SHEET
OFFSET/ADDRESS|ACRONYM REGISTER NAME SECTION
03xx RH[N]CR |Receive HDLC n Control Register 6.2
04xx TH[n]CR [Transmit HDLC n Control Register 6.2

10 of 16

AN386

/1 RX HDLC configurati

/] Set bits 3-2 = 10 for

on

write_reg(RH n] CR, 0x0008);

/1 TX HDLC configurati
/1 Set bit 1= 0 to sel

/] Set bits 3-2 = 10 for
/] Set bits 11-8 = 1000 for

on

32-bit CRC

ect an interfill byte of 7E

write_reg(TH n] CR, 0x0108);

32-bit
closing flag/no interfill

CRC

3. Enable the HDLC Channel
After the DS3131 has been initialized the next step is to enable the HDLC channel. In addition to the
configuration steps already described, the following steps must be performed to enable packet
transmission and reception in the DS3131.

1) Enable the channel in the port Tx and Rx configuration RAMSs
2) Enable port data transmission in Layer 1

3) Enable Tx DMA and Rx DMA for the DS3131

4) Enable HDLC channel in Tx DMA and Rx DMA

byt es/ openi ng fl ag

DATA SHEET
OFFSET/ADDRESS | ACRONYM REGISTER NAME SECTION
0010 MC Master Configuration Register 4.2
02xx TP[N]CR | Transmit Port n Control Register 5.2
03xx RH[N]CR [Receive HDLC n Control Register 6.2
0770 RDMACIS [Receive DMA Configuration Indirect Select Register 8.1.5
0774 RDMAC [Receive DMA Configuration Register 8.1.5
0870 TDMACIS |Transmit DMA Configuration Indirect Select Register 8.2.5
0874 TDMAC | Transmit DMA Configuration Indirect Select Register| 8.2.5

/1 TX port control register
/1 Set Bit 3 =1 to allowdata to be transnmitted normally

read_reg(TPOCR + 4*port,
write_reg(TPOCR + 4*port,

/1 RX HDLC configurati

on

data) ;
data | 0x0008);

/1l Set bits 9 = 1 to enable the port (RPEN)
wite_reg(RH n] CR, 0x0200);

// Read the current channel

val ue fromthe RX DMA Configurati on RAM

/] Set RDMACIS bits 5-0 = channel

/] Set RDMACIS bits 10-8 = 100 to read | ower word of dword 2
= 1to read from RAM

write_reg_| S(RDMACI S, 0x4400 + channel);

/1 Set RDMACIS bit 14

read_reg(RDMAC, data);

// Enabl e channel in RX DMA
/'l Update RAM with new val ue
// Set RDMAC bit 0 = 1 to enable the HDLC channel

// Set RDMACIS bits 5-

0 = channel

// Set RDMACIS bits 10-8 = 100 to read | ower word of dword 2
= 1to read from RAM

| 0x0001);

write_reg_| S(RDMACI S, 0x0400 + channel);

/] Set RDMACIS bit 14
wite_reg(RDMAC, data

/! Read the current channel

value fromthe TX DMA Configurati on RAM

/!l Set TDMACIS bits 5-0 = channel

11 of 16

AN386

// Set TDMACIS bits 11-8 = 0010 to read | ower word of dword 1
/] Set TDMACIS bit 14 = 1 to read from RAM
write_reg_ | S(TDMACI S, 0x4200 + channel);

read_reg(TDMAC, data);

/! Enabl e channel TX DVA

/1 Update RAM wi th new val ue

/] Set TDMAC bit 0 = 1 to enable the HDLC channel

/1 Set TDMACIS bits 5-0 = channel

/] Set TDMACIS bits 11-8 = 0010 to read | ower word of dword 1
// Set TDMACIS bit 14 = 0 to wite to RAM

write_reg((TDMAC, data | 0x0001);

wite reg | S(TDMACI S, 0x0200, + channel);

/1 Enable TX and RX DMA in the DS3131 master configuration register

/1 Set bit 0 =1 to enable Receive DVA

/1 Set bits 2-1 = 00 to burst length maximumis 32 dwords

/1 Set bit 3 =1 to enable Transmt DMA

/'l Set bits 6 = 1 for HDLC packet data on PClI bus is big endian

/1 Set bits 12-7 = 000000 to select Port 0 has the dedicated resources of the BERT
write reg(MC, 0x0049);

4. Place the HDLC Channel in Loopback Mode

After the channel has been configured and enabled it takes goproximately 5 frame periods, or 625us, for
the internal logic of the DS3131 to complete the transition to the new configuration. Once this transition
has completed, the HDL C channel can then be placed in loopback mode so that all data transmitted on the
channdl is aso received on that channel. Placing the HDLC channel in loopback mode prior to the 5
frame wait period can result in garbage data being written into the channel’s Rx FIFO.

DATA SHEET
OFFSET/ADDRESS | ACRONYM REGISTER NAME SECTION
01xx RP[n]CR Receive Port n Control Register 5.2

/1 Wait for at least 5 franme periods for the internal DS3131 initialization to
conpl ete
frame_wait (5);

/1 Set Bit 10 = 1 to enable | oopback - routes transnit data back to the receive port
read_reg(RPOCR + 4*port, data);
write_reg(RPOCR + 4*port, data | 0x0400);

5. Queue, Send, Receive, and Check a Data Packet

Once the DS3131 initialization has been completed, data can be transmitted and received. Since the
DS3131 isin loopback mode all data transmitted on the HDLC channel is aso received on that channel.
This section describes the process of how to build a data packet in host memory, transmit and receive the
packet, and check the results. The following sections describe this process in detail.

Initialize the Rx Free Queue

Before the DS3131 can transfer DMA-received packets from its internal FIFO to host memory, the host
must instruct the DS3131 where to put the data. This is done through the Rx free queue. Each entry in the
Rx free queue contains a pointer to an Rx data buffer and an Rx packet descriptor index. This example
uses one Rx free queue entry. This entry contains one Rx free queue large buffer and one Rx packet
descriptor. The DS3131 Rx large data buffer size has been set to 256 bytes (RLBS = 256). Additionally,
the DS3131 has been configured to use a 4-byte CRC and to write the Rx CRC into the Rx data buffer.
Therefore, one Rx large data buffer is capable of holding up to 252 bytes of packet data.

12 of 16

AN386

DATA SHEET
OFFSET/ADDRESS| ACRONYM REGISTER NAME SECTION
0710 RFQLBWP | Receive Free Queue Large Buffer Host Write Pointer 8.1.3
0718 RFQLBRP | Receive Free Queue Large Buffer DMA Read Pointer 8.1.3

/1 check for space in RX |arge free queue
read_reg(RFQLBWP, wr _ptr);
read_reg(RFQLBRP, rd_ptr);
if (rd_ptr > wr_ptr)

cnt = rd_ptr — w_ptr - 1;
el se

cnt = rfg_end_idx — w_ptr + rd_ptr;

/1 1f roomin RX free queue then put 1 entry in the queue

/1 dword O = RX data buffer address

/1 (use RX data buffer starting at RX buffer area base address)

/1l dword 1 = correspondi ng RX descriptor index (use RX descriptor table index 0)
if (cnt > 0)

{

rx_dscr_idx = 0;

wr_dword(rfqg_base_addr + wr_ptr*8, rx_buf_base_addr);

wr_dword(rfq_base_addr + wr_ptr*8 + 4, rx_dscr_idx);

/1 Advance the RX free queue large buffer wite pointer by 1
wite reg(RFQLBWP, (w _ptr + 1) % (rfg_end_idx + 1));
}

Build the Packet in Host Memory

This example sends a 16-byte data packet. Before a packet can be sent it must be constructed in the host
memory. Additionally, a corresponding Tx packet descriptor must also be constructed in host memory.
Each of these tasks is detailed in the following code.

/1l Create a 16-byte data packet in menory in a TX buffer whose start address is the
TX

/1l buffer area base address

wr _dwor d(tx_buf_base_addr, 0x01234567);

wr _dword(tx_buf_base_addr + 4, O0x89ABCDEF) ;

wr _dwor d(tx_buf_base_addr + 8, 0x02468ACE)

wr _dwor d(tx_buf_base_addr + 12, 0x13579BDF);

/1l Create a TX descriptor (4 dwords) for the packet at TX descriptor
/1 TX descriptor table index O

/1 dwordO = TX buffer address

/1 dwordl = EOF, CV, byte count, next descriptor pointer
/1 dowd2 = HDLC channe

/1 dword3 = PV, next pending descriptor pointer (set to 0)

tx_dscr_idx = O;
wr _dword(tdscr_base_addr + tx_dscr_idx*16, tx_buf_base_addr);
wr _dword(tdscr_base_addr + tx_dscr_idx*16 + 4, 0x80100000);

wr _dword(tdscr_base_addr + tx_dscr_idx*16 + 8, 0x00000000 + channel);
wr _dword(tdscr_base_addr + tx_dscr_idx*16 + 12, 0x00000000);

Transmit and Receive the Packet
In order to transmit the packet, the Tx descriptor must be placed in the transmit pending queue and then
the transmit pending-queue write pointer (TPQWP) must be incremented. When the DS3131 detects that

pending queue is not empty (TPQWP not equa to TPQRP) it begins processing queue entries and the
packet is transmitted.

13 of 16

AN386

DATA SHEET
OFFSET/ADDRESS| ACRONYM REGISTER NAME SECTION
0028 SDMA Status Register for DMA 4.3.2
080C TPQWP Transmit Pending Queue Host Write Pointer 8.2.3
0810 TPORP Transmit Pending Queue DMA Read Pointer 8.2.3

/1 Read SDMA register to clear any previously set status bits
read_reg(SDVA, data);

/'l check free space in TX pendi ng queue
read_reg(TPQNP, w _ptr);
read_reg(TPQRP, rd_ptr)
if (rd_ptr > wr_ptr)

cnt = rd_ptr — w_ptr - 1;
el se

cnt =rfg_end_idx — w_ptr + rd_ptr;

/1 1f roomin the TX pendi ng queue create an entry for the packet
if (cnt > 0)

wr _dword(tpg_base_addr + wr_ptr*4, 0x0000000 + (channel << 16));
/1 Advance the TX pendi ng queue wite pointer

write_reg(TPQAP, (wr _ptr + 1) % (tpg_end_idx + 1));
}

Check the Results

After waiting a sufficient period of time for the packet to be transmitted and received, several checks can
be performed to determine if packet transmission and reception was successful. The following code

details these checks.

DATA SHEET
OFFSET/ADDRESS | ACRONYM REGISTER NAME SECTION
0028 SDMA Status Register for DMA 4.3.2
0710 RFQLBWP |Receive Free Queue Large Buffer Host Write Pointer 8.1.3
0718 RFQLBRP | Receive Free Queue Large Buffer DMA Read Pointer 8.1.3
073C RDQRP Receive Done Queue Host Read Pointer 8.1.4
0740 RDQWP | Receive Done Queue DMA Write Pointer 8.14
083C TDQRP | Transmit Done Queue Host Read Pointer 8.2.4
0840 TDQWP | Transmit Done Queue DMA Write Pointer 8.2.4

14 of 16

AN386

/1 wait 2 frame periods for packet to be transnmitted/received
frame_wait(2);

/1 Check SDMA register
/1 Expected value = 0x6440, if not, it means there was error
read_reg(SDVA, data);

/'l Check to see how many entries are in the TX done queue (distance from TDQRP to
Il TDQAP)
/!l Expected value is 1 - one entry in the TX done queue corresponding to the packet
t hat
/1 was sent
read_reg(TDQRP, rd_ptr);
read_reg(TDQAP, wr _ptr);
if (w_ptr >=rd_ptr)
cnt = w_ptr - rd_ptr;
el se
cnt = tdg end_idx + 1 - rd_ptr + w_ptr;

/1 Check TX done queue descriptor

/1l Expected val ue = 0x0001000

/1l Bits 15-0 indicates the descriptor pointer

/1l Bits 21-16 indicate the channel nunber, it should be 1 in this exanple

/1l Bits 28-26 indicate the packet status, all O neans the packet transmi ssion is
conpl ete

/'l and the descriptor pointer field corresponds to the first descriptor in the HDLC
packet

/1 that has been transnmitted

rd_dword(tdq_base_addr + rd_ptr*4, tdg_entry);

/1 Advance the TX done queue read pointer
wite reg(TDQRP, (rd_ptr + 1) % (tdg_end_idx + 1));

/1 Check the RX | arge free queue to see how many RX buffers are in the queue
(distance // from RFQLBRP to RFQLBWP)
/1 Expected number is O since the queue had 1 buffer before the packet was received
and // packet reception required 1 buffer
read_reg(RFQLBRP, rd_ptr);
read_reg(RFQLBWP, wr _ptr);
if (w_ptr >=rd_ptr)
cnt = w_ptr - rd_ptr;
el se
cnt =rfg_end_idx + 1 — rd_ptr + w_ptr;

/1 Check RX done queue to see if any packets were received (distance from RDQRP to
/1 RDQAP)
/1 Expected value is 1 - one entry in the RX done queue entry corresponding to the
one
/1 packet that should have been received
read_reg(RDQRP, rd_ptr);
read_reg(RDQWP, wr _ptr);
if (w_ptr >= rd_ptr)
cnt = w_ptr - rd_ptr;
el se
cnt = rdg_end_idx + 1 — rd_ptr + w_ptr;

/1 Check the RX done queue descriptor
/1 Expected value = 0x40010000,

15 of 16

AN386

/1l Bits 15-0 indicates the descriptor pointer

/1l Bits 21-16 indicate the channel nunber, it should be 1 in this exanple

/1l Bits 26-24 indicate the buffer count, all 0 nmeans that a conpl ete packet has been
/1 received

rd_dword(rdg_base_addr + 8*rd_ptr, rdg_entry);

/1 Check the correspondi ng RX descriptor (4 dwords)

/1 dword O expected value = 0x10001000 the RX buffer address
/1 dword 1 expected value = 0x80140000

/1l Bits 15-0 is the next descriptor pointer

/1l Bits 28-16 is the nunber of bytes stored in the data buffer
/1 Bits 31-29 indicates buffer status

/1 dword 2 excepted val ue = 0x000B7503

/1 Bits 5-0 indicates HDLC channel nunber (should match TDQ entry channel)
// Bits 31-8 indicates the timestanp (can vary)

rdscr_idx = rdg_entry & OxO000FFFF

rd_dword(rdscr_base_addr + 16*rdscr _idx, rdscr_dwordO);
rd_dword(rdscr_base_addr + 16*rdscr_idx + 4, rdscr_dwordl);
rd_dword(rdscr_base_addr + 16*rdscr_idx + 8, rdscr_dword2);

/] Check the data in the RX buffer
/1 16 bytes of data + 4-byte CRC

/1 Expected val ues = 0x01234567
/1 0x89ABCDEF
/1 0x02468ACE
/1 0x13579BDF
/1 0x05127B09 (4-byte CRC)

byte count = (rdscr_dwordl >> 16) & Ox00001FFF

for (addr=rdscr_dword0O, addr<rdscr_dwordO+byte_count; addr=addr +4)
rd_dword(addr, data);

/1 Advance the RX done queue read pointer

wite_reg(RDQRP, (rd_ptr + 1) % (rdg_end_idx + 1));

16 of 16

